Astrophysics

Articles reflecting current approaches to astrophysics and/or how the SCIET impacts the field.

A New Test for the Leading Big Bang Theory

A New Test for the Leading Big Bang Theory

Cosmologists have predicted the existence of an oscillating signal that could distinguish
between cosmic inflation and alternative theories of the universe’s birth.

The leading hypothesis about the universe’s birth — that a quantum speck of space became energized and inflated in a split second, creating a baby cosmos — solves many puzzles and fits all observations to date. Yet this “cosmic inflation” hypothesis lacks definitive proof. Telltale ripples that should have formed in the inflating spatial fabric, known as primordial gravitational waves, haven’t been detected in the geometry of the universe by the world’s most sensitive telescopes. Their absence has fueled underdog theories of cosmogenesis in recent years. And yet cosmic inflation is wriggly. In many variants of the idea, the sought-after ripples would simply be too weak to observe.

“The question is whether one can test the entire [inflation] scenario, not just specific models,” said Avi Loeb, an astrophysicist and cosmologist at Harvard University. “If there is no guillotine that can kill off some theories, then what’s the point?”

[Note from SCIET Dynamics- The “Big Bang” observations can be accounted for differently. Rather than a speck of matter, the origin was an intrusion of consciousness that expressed an energy from the center to the edge, which then defused throughout the area defined by the radius of the expression. The SCIET algorithm requires specific conditions to do this, but these conditions existed and continue to exist. This concept is not about inflation, but about consolidation within a limited space defined by the original expression. It is also necessary to dispel the idea that all the matter in the universe existed before the Big Bang, and instead embrace the idea that matter is created after the expression through the resonance of nonmaterial points with one another. This resonance continues at the heart of all matter today.]

In a new paper that appeared on the physics preprint site, arxiv.org, on Sunday, Loeb and two Harvard colleagues, Xingang Chen and Zhong-Zhi Xianyu, suggested such a guillotine. The researchers predicted an oscillatory pattern in the distribution of matter throughout the cosmos that, if detected, could distinguish between inflation and alternative scenarios — particularly the hypothesis that the Big Bang was actually a bounce preceded by a long period of contraction.

The paper has yet to be peer-reviewed, but Will Kinney, an inflationary cosmologist at the University at Buffalo and a visiting professor at Stockholm University, said “the analysis seems correct to me.” He called the proposal “a very elegant idea.”

“If the signal is real and observable, it would be very interesting,” Sean Carroll of the California Institute of Technology said in an email.

Any potential hints about the Big Bang are worth looking for, but the main question, according to experts, is whether the putative oscillatory pattern will be strong enough to detect. It might not be a clear-cut guillotine as advertised.If it does exist, the signal would appear in density variations across the universe. Imagine taking a giant ice cream scoop to the sky and counting how many galaxies wind up inside. Do this many times all over the cosmos, and you’ll find that the number of scooped-up galaxies will vary above or below some average. Now increase the size of your scoop. When scooping larger volumes of universe, you might find that the number of captured galaxies now varies more extremely than before. As you use progressively larger scoops, according to Chen, Loeb and Xianyu’s calculations, the amplitude of matter density variations should oscillate between more and less extreme as you move up the scales. “What we showed,” Loeb explained, is that from the form of these oscillations, “you can tell if the universe was expanding or contracting when the density perturbations were produced” — reflecting an inflationary or bounce cosmology, respectively.

Regardless of which theory of cosmogenesis is correct, cosmologists believe that the density variations observed throughout the cosmos today were almost certainly seeded by random ripples in quantum fields that existed long ago.

Because of quantum uncertainty, any quantum field that filled the primordial universe would have fluctuated with ripples of all different wavelengths. Periodically, waves of a certain wavelength would have constructively interfered, forming peaks — or equivalently, concentrations of particles. These concentrations later grew into the matter density variations seen on different scales in the cosmos today.

But what caused the peaks at a particular wavelength to get frozen into the universe when they did? According to the new paper, the timing depended on whether the peaks formed while the universe was exponentially expanding, as in inflation models, or while it was slowly contracting, as in bounce models.

If the universe contracted in the lead-up to a bounce, ripples in the quantum fields would have been squeezed. At some point the observable universe would have contracted to a size smaller than ripples of a certain wavelength, like a violin whose resonant cavity is too small to produce the sounds of a cello. When the too-large ripples disappeared, whatever peaks, or concentrations of particles, existed at that scale at that moment would have been “frozen” into the universe. As the observable universe shrank further, ripples at progressively smaller and smaller scales would have vanished, freezing in as density variations. Ripples of some sizes might have been constructively interfering at the critical moment, producing peak density variations on that scale, whereas slightly shorter ripples that disappeared a moment later might have frozen out of phase. These are the oscillations between high and low density variations that Chen, Loeb and Xianyu argue should theoretically show up as you change the size of your galaxy ice cream scoop.

These oscillations would also arise if instead the universe experienced a period of rapid inflation. In that case, as it grew bigger and bigger, it would have been able to fit quantum ripples with ever larger wavelengths. Density variations would have been imprinted on the universe at each scale at the moment that ripples of that size were able to form.The authors argue that a qualitative difference between the forms of oscillations in the two scenarios will reveal which one occurred. In both cases, it was as if the quantum field put tick marks on a piece of tape as it rushed past — representing the expanding or contracting universe. If space were expanding exponentially, as in inflation, the tick marks imprinted on the universe by the field would have grown farther and farther apart. If the universe contracted, the tick marks should have become closer and closer together as a function of scale. Thus Chen, Loeb and Xianyu argue that the changing separation between the peaks in density variations as a function of scale should reveal the universe’s evolutionary history. “We can finally see whether the primordial universe was actually expanding or contracting, and whether it did it inflationarily fast or extremely slowly,” Chen said.

David Kaplan explores the leading cosmological explanation for the origin of the universe.

Video: David Kaplan explores the leading cosmological explanation for the origin of the universe.

Filming by Petr Stepanek. Editing and motion graphics by MK12. Music by Pete Calandra and Scott P. Schreer.

Exactly what the oscillatory signal might look like, and how strong it might be, depend on the unknown nature of the quantum fields that might have created it. Discovering such a signal would tell us about those primordial cosmic ingredients. As for whether the putative signal will show up at all in future galaxy surveys, “the good news,” according to Kinney, is that the signal is probably “much, much easier to detect” than other searched-for signals called “non-gaussianities”: triangles and other geometric arrangements of matter in the sky that would also verify and reveal details of inflation. The bad news, though, “is that the strength and the form of the signal depend on a lot of things you don’t know,” Kinney said, such as constants whose values might be zero, and it’s entirely possible that “there will be no detectable signal.”

Posted by Sc13t4 in Astrophysics, Cosmology, Space/Time, The Void, Theoretical Physics, 0 comments
A Short History of the Missing Universe

A Short History of the Missing Universe

The cosmos plays hide-and-seek. Sometimes, though, even when astronomers have a hunch for where their prey might hide, it can take them decades of searching to confirm it. The case of the universe’s missing matter — a case that appears to now be closed, as I reported earlier this month — is one such instance. To me, it is a fascinating tale in which clever cosmological models drew a treasure map that took 20 years to explore.

The concept of matter in SCIET Dynamics is related to the formatting of space at the time of the FIRST ACTION, a moment when massive burst of energy was distributed throughout space, in fact this burst defined SPACE and its definition was made of the energy of the original burst. Matter was created from this, and so the remaining energy is the missing matter. SPACETIME has Mass.

Scientists knew back in the 1980s that they could observe only a fraction of the atomic matter — or baryons — in the universe. (Today we know that all baryons taken together are thought to make up about 5 percent of the universe — the rest is dark energy and dark matter.) They knew that if they counted up all the stuff they could see in the universe — stars and galaxies, for the most part — the bulk of the baryons would be missing.

But exactly how much missing matter there was, and where it might be hiding, were questions that started to sharpen in the 1990s. Around that time, astronomer David Tytler of the University of California, San Diego, came up with a way to measure the amount of deuterium in the light of distant quasars — the bright cores of galaxies with active black holes at their center — using the new spectrograph at the Keck telescope in Hawaii. Tytler’s data helped researchers understand just how many baryons were missing in today’s universe once all the visible stars and gas were accounted for: a whopping 90 percent.

These results set off a firestorm of controversy, fanned in part by Tytler’s personality. “He [insisted] he was right in spite of, at the time, a lot of seemingly contradictory evidence, and basically said everyone else was a bunch of idiots who didn’t know what they were doing,” said Romeel Dave, an astronomer at the University of Edinburgh. “Turns out, of course, he was right.”

Then in 1998, Jeremiah Ostriker and Renyue Cen, Princeton University astrophysicists, released a seminal cosmological model that tracked the history of the universe from its beginnings. The model suggested that the missing baryons were likely wafting about in the form of diffuse (and at the time undetectable) gas between galaxies.

As it happens, Dave could have been the first to tell the world where the baryons were, beating Ostriker and Cen. Months before their paper came out, Dave had finished his own set of cosmological simulations, which were part of his Ph.D. work at the University of California, Santa Cruz. His thesis on the distribution of baryons suggested that they might be lurking in the warm plasma between galaxies. “I didn’t really appreciate the result for what it was,” said Dave. “Oh well, win some, lose some.”

Dave continued to work on the problem in the years to follow. He envisioned the missing matter as hiding in ghostly threads of extremely hot and very diffuse gas that connect galaxy pairs. In astro-speak, this became the “warm-hot intergalactic medium,” or WHIM, a term that Dave coined.

Many astronomers continued to suspect that there might be some very faint stars in the outskirts of galaxies that could account for a significant chunk of the missing matter. But after many decades of searching, the number of baryons in stars, even the faintest ones that could be seen, amounted to no more than 20 percent.

More and more sophisticated instruments came online. In 2003, the Wilkinson Microwave Anisotropy Probe measured the universe’s baryon density as it stood some 380,000 years after the Big Bang. It turned out to be the same density as indicated by the cosmological models. A decade later, the Planck satellite confirmed the number.

With the eventual failure to find hidden stars and galaxies that might be holding the missing matter, “attention turned toward gas in between the galaxies — the intergalactic medium distributed over billions of light years of low-density intergalactic space,” said Michael Shull, an astrophysicist at University of Colorado, Boulder. He and his team began searching for the WHIM by studying its effects on the light from distant quasars. Atoms of hydrogen, helium and heavier elements such as oxygen absorb the ultraviolet and X-ray radiation from these quasar lighthouses. The gas “steals a portion of light from the beam,” said Shull, leaving a deficit of light — an absorption line. Find the lines, and you’ll find the gas.

The most prominent absorption lines of hydrogen and ionized oxygen are at very short wavelengths, in the ultraviolet and X-ray portions of the spectrum. Unfortunately for astronomers (but fortunately for the rest of life on Earth), our atmosphere blocks these rays. In part to solve the missing matter problem, astronomers launched X-ray satellites to map this light. With the absorption line method, Shull said, scientists eventually “accounted for most, if not all, of the predicted baryons that were cooked up in the hot Big Bang.”

Other teams took different approaches, looking for the missing baryons indirectly. As my story from last week shows, three teams, including Shull’s, are now saying that all the baryons are accounted for.

But the WHIM is so faint, and the matter so diffuse, that it’s hard to definitely close the case. “Over the years, there have been many exchanges among researchers arguing for or against possible detections of the warm-hot intergalactic medium,” said Kenneth Sembach, director of the Space Telescope Science Institute in Baltimore. “I suspect there will be many more. The recent papers appear to be another piece in this complex and interesting cosmic puzzle. I’m sure there will be more pieces to come, and associated debates about how best to fit these pieces together.”

https://www.quantamagazine.org/a-short-history-of-the-missing-universe-20180919/

Posted by Sc13t4 in Astrophysics, Cosmology, Space/Time, The Void, Theoretical Physics, 0 comments
The Puzzle of the First Black Holes

The Puzzle of the First Black Holes

IN BRIEF

  • In the very distant, ancient universe, astronomers can see quasars—extremely bright objects powered by enormous black holes. Yet it is unclear how black holes this large could have formed so quickly after the big bang.
  • To solve the mystery, scientists proposed a novel mechanism for black hole formation. Rather than being born in the deaths of massive stars, the seeds of the most ancient supermassive black holes might have collapsed directly from gas clouds.
  • Astronomers may be able to find evidence for direct-collapse black holes using the James Webb Space Telescope, due to launch in 2019, which should see farther back in space and time than any instrument before it.

[SCIET Dynamics Note] SCIET regards Black Holes
as openings to the original Void, revealed by the energy
of vortex motion from the spinning disk of matter.
Space is “sticky”, it adheres to itself because it consists of  layers
of  energetic interactions between  equidistant polarized regions ,
which exist at all units of distance.
At the same time all of these units descend from the
original first action (the “big bang”), meaning that they
are restrained from changing faster than the space around them,
or faster than the original first action (the first change).

Image Credit: Mark Ross- Illustrated as understood today, the idea that the black hole is the source of gravity that attracts all the matter around it may be mistaken. In SCIET Dynamics it is viewed as a “portal”. The black hole is actually an opening in the fabric of space created by the mass swirling around it that is the basis of all the physical affects associated with it. Could we tell the difference? If it is a vortex of matter, then it would indeed create a “hole”, just like a whirlpool or tornado creates a hole and the power it generates is concentrated in the matter at the edge of the hole.

By Priyamvada Natarajan on February 1, 2018 from Scientific American

Imagine the universe in its infancy. Most scientists think space and time originated with the big bang. From that hot and dense start the cosmos expanded and cooled, but it took a while for stars and galaxies to start dotting the sky. It was not until about 380,000 years after the big bang that atoms could hold together and fill the universe with mostly hydrogen gas. When the cosmos was a few hundred million years old, this gas coalesced into the earliest stars, which formed in clusters that clumped together into galaxies, the oldest of which appears 400 million years after the universe was born. To their surprise, scientists have found that another class of astronomical objects begins to appear at this point, too: quasars.

Quasars are extremely bright objects powered by gas falling onto supermassive black holes. They are some of the most luminous things in the universe, visible out to the farthest reaches of space. The most distant quasars are also the most ancient, and the oldest among them pose a mystery.

To be visible at such incredible distances, these quasars must be fueled by black holes containing about a billion times the mass of the sun. Yet conventional theories of black hole formation and growth suggest that a black hole big enough to power these quasars could not have formed in less than a billion years. In 2001, however, with the Sloan Digital Sky Survey, astronomers began finding quasars that dated back earlier. The oldest and most distant quasar known, which was reported last December, existed just 690 million years after the big bang. In other words, it does not seem that there had been enough time in the history of the universe for quasars like this one to form.

Many astronomers think that the first black holes—seed black holes—are the remnants of the first stars, corpses left behind after the stars exploded into supernovae. Yet these stellar remnants should contain no more than a few hundred solar masses. It is difficult to imagine a scenario in which the black holes powering the first quasars grew from seeds this small.

To solve this quandary, a decade ago some colleagues and I proposed a way that seed black holes massive enough to explain the first quasars could have formed without the birth and death of stars. Instead these black hole seeds would have formed directly from gas. We call them direct-collapse black holes (DCBHs). In the right environments, direct-collapse black holes could have been born at 104 or 105 solar masses within a few hundred million years after the big bang. With this head start, they could have easily grown to 109 or 1010 solar masses, thereby producing the ancient quasars that have puzzled astronomers for nearly two decades.

The question is whether this scenario actually happened. Luckily, when the James Webb Space Telescope (JWST) launches in 2019, we should be able to find out.

THE FIRST SEEDS

Black holes are enigmatic astronomical objects, areas where the gravity is so immense that it has warped spacetime so that not even light can escape. It was not until the detection of quasars, which allow astronomers to see the light emitted by matter falling into black holes, that we had evidence that they were real objects and not just mathematical curiosities predicted by Einstein’s general theory of relativity.

Most black holes are thought to form when very massive stars—those with more than about 10 times the mass of sun—exhaust their nuclear fuel and begin to cool and therefore contract. Eventually gravity wins, and the star collapses, igniting a cataclysmic supernova explosion and leaving behind a black hole. Astronomers have traditionally assumed that most of the black holes powering the first quasars formed this way, too. They could have been born from the demise of the universe’s first stars (Population III stars), which we think formed when primordial gas cooled and fragmented about 200 million years after the big bang. Population III stars were probably more massive than stars born in the later universe, which means they could have left behind black holes as hefty as several hundred solar masses. These stars also probably formed in dense clusters, so it is likely that the black holes created on their deaths would have merged, giving rise to black holes of several thousand solar masses. Even black holes this large, however, are far smaller than the masses needed to power the ancient quasars.

Theories also suggest that so-called primordial black holes could have arisen even earlier in cosmic history, when spacetime may have been expanding exponentially in a process called inflation. Primordial black holes could have coalesced from tiny fluctuations in the density of the universe and then grown as the universe expanded. Yet these seeds would weigh only between 10 and 100 solar masses, presenting the same problem as Population III remnants.

As an explanation for the first quasars, each of these pathways for the formation of black hole seeds has the same problem: the seeds would have to grow extraordinarily quickly within the first billion years of cosmic history to create the earliest quasars. And what we know about the growth of black holes tells us that this scenario is highly unlikely.

The SCIET approach is much simpler.
The original Black Holes are portals that are now “receivers”
for newer Black Holes and the matter spewing out of them
is simply being “portaled” there from the newer ones.
The concept of portals in SCIET Dynamics requires that an opening in the
fabric of space”  cannot accept matter into a different
frequency  since the rule of like interacts with like forces it to
interact with a matching frequency  regardless of physical proximity.
Thus the event horizon of a black hole matches the event horizon of another black hole,
and older ones exist at a slightly lower frequency.

FEEDING A BLACK HOLE

Our current understanding of physics suggests that there is an optimal feeding rate, known as the Eddington rate, at which black holes gain mass most efficiently. A black hole feeding at the Eddington rate would grow exponentially, doubling in mass every 107 years or so. To grow to 109 solar masses, a black hole seed of 10 solar masses would have to gobble stars and gas unimpeded at the Eddington rate for a billion years. It is hard to explain how an entire population of black holes could continuously feed so efficiently.

In effect, if the first quasars grew from Population III black hole seeds, they would have had to eat faster than the Eddington rate. Surpassing that rate is theoretically possible under special circumstances in dense, gas-rich environments, and these conditions may have been available in the early universe, but they would not have been common, and they would have been short-lived. Furthermore, exceptionally fast growth can actually cause “choking,” where the radiation emitted during these super-Eddington episodes could disrupt and even stop the flow of mass onto the black hole, halting its growth. Given these restrictions, it seems that extreme feasting could account for a few freak quasars, but it cannot explain the existence of the entire detected population unless our current understanding of the Eddington rate and black hole feeding process is wrong.

Thus, we must wonder whether the first black hole seeds could have formed through other channels. Building on the work of several other research groups, my collaborator Giuseppe Lodato and I published a set of papers in 2006 and 2007 in which we proposed a novel mechanism that could have produced more massive black hole seeds from the get-go. We started with large, pristine gas disks that might otherwise have cooled and fragmented to give rise to stars and become galaxies. We showed that it is possible for these disks to circumvent this conventional process and instead collapse into dense clumps that form seed black holes weighing 104 to 106 solar masses. This outcome can occur if something interferes with the normal cooling process that leads to star formation and instead drives the entire disk to become unstable, rapidly funneling matter to the center, much like water flowing down a bathtub drain when you pull the plug.

Disks cool down more efficiently if their gas includes some molecular hydrogen—two hydrogen atoms bonded together—rather than atomic hydrogen, which consists of only one atom. But if radiation from stars in a neighboring galaxy strikes the disk, it can destroy molecular hydrogen and turn it into atomic hydrogen, which suppresses cooling, keeping the gas too hot to form stars. Without stars, this massive irradiated disk could become dynamically unstable, and matter would quickly drain into its center, rapidly driving the production of a massive, direct-collapse black hole. Because this scenario depends on the presence of nearby stars, we expect DCBHs to typically form in satellite galaxies that orbit around larger parent galaxies where Population III stars have already formed.

Simulations of gas flows on large scales, as well as the physics of small-scale processes, support this model for DCBH formation. Thus, the idea of very large initial seeds appears feasible in the early universe. And starting with seeds in this range alleviates the timing problem for the production of the supermassive black holes that power the brightest, most distant quasars.

LOOKING FOR PROOF

But just because DCBH seeds are feasible does not mean they actually exist. To find out, we must search for observational evidence. These objects would appear as bright, miniature quasars shining through the early universe. They should be detectable during a special phase when the seed merges with the parent galaxy—and this process should be common, given that DCBHs probably form in satellites orbiting larger galaxies. A merger would give the black hole seed a copious new source of gas to eat, so the black hole should start growing rapidly. In fact, it would briefly turn into a special kind of quasar that outshines all the stars in the galaxy.

Credit: Amanda Montañez

These black holes will not only be brighter than their surrounding stars, they will also be heavier—a reversal of the usual order of things. In general, the stars in a galaxy outweigh the central black holes by about a factor of 1,000. After the galaxy hosting the DCBH merges with its parent galaxy, however, the mass of the growing black hole will briefly exceed that of the stars. Such an object, called an obese black hole galaxy (OBG), should have a very special spectral signature, particularly in the infrared wavelengths between one and 30 microns where the JWST’s Mid-Infrared Instrument (MIRI) and Near-Infrared Camera (NIRCam) cameras will operate. This telescope will be the most powerful tool astronomers have ever had for peering into the earliest stages of cosmic history. If the telescope detects these obese black hole galaxies, it will provide strong evidence for our DCBH theory. Traditional black hole seeds, on the other hand, which derive from dead stars, are likely to be too faint for the JWST or other telescopes to see.

It is also possible that we might find other evidence for our theory. In the rare case that the parent galaxy that merges with the DCBH also hosts a central black hole, the two holes will collide and release powerful gravitational waves. These waves could be detectable by the Laser Interferometer Space Antenna (LISA), a European Space Agency/NASA mission expected to fly in the 2030s.

A FULLER PICTURE

It is entirely possible that both the DCBH scenario and small seeds feeding at super-Eddington rates both occurred in the early universe. In fact, the initial black hole seeds probably formed via both these pathways. The question is, Which channel created the bulk of the bright ancient quasars that astronomers see? Solving this mystery could do more than just clear up the timeline of the early cosmos. Astronomers also want to understand more broadly how supermassive black holes affect the larger galaxies around them.

Data suggest that central black holes might play an important role in adjusting how many stars form in the galaxies they inhabit. For one thing, the energy produced when matter falls into the black hole may heat up the surrounding gas at the center of the galaxy, thus preventing cooling and halting star formation. This energy may even have far-reaching effects outside the galactic center by driving energetic jets of radiation outward. These jets, which astronomers can detect in radio wavelengths, could also heat up gas in outer regions and shut down star formation there. These effects are complex, however, and astronomers want to understand the details more clearly. Finding the first seed black holes could help reveal how the relation between black holes and their host galaxies evolved over time.

These insights fit into a larger revolution in our ability to study and understand all masses of black holes. When the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first detection of gravitational waves in 2015, for instance, scientists were able to trace them back to two colliding black holes weighing 36 and 29 solar masses, the lightweight cousins of the supermassive black holes that power quasars. The project continues to detect waves from similar events, offering new and incredible details about what happens when these black holes crash and warp the spacetime around them. Meanwhile a project called the Event Horizon Telescope aims to use radio observatories scattered around Earth to image the supermassive black hole at the center of the Milky Way. Scientists hope to spot a ringlike shadow around the black hole’s boundary that general relativity predicts will occur as the hole’s strong gravity deflects light. Any deviations the Event Horizon Telescope measures from the predictions of general relativity have the potential to challenge our understanding of black hole physics. In addition, experiments looking at pulsing stars called pulsar timing arrays could also detect tremors in spacetime caused by an accumulated signal of many collisions of black holes. And very soon the JWST will open up an entirely new window on the very first black holes to light up the universe.

Many revelations are in store in the very near future, and our understanding of black holes stands to be transformed.

This article was originally published with the title “The First Monster Black Holes”

Rights & Permissions

MORE TO EXPLORE

New Observational Constraints on the Growth of the First Supermassive Black Holes. E. Treister, K. Schawinski, M. Volonteri and P. Natarajan in Astrophysical Journal, Vol. 778, No. 2, Article No. 130; December 1, 2013.

Seeds to Monsters: Tracing the Growth of Black Holes in the Universe. Priyamvada Natarajan in General Relativity and Gravitation, Vol. 46, No. 5, Article No. 1702; May 2014.

Mapping the Heavens: The Radical Scientific Ideas That Reveal the Cosmos. Priyamvada Natarajan. Yale University Press, 2016.

Unveiling the First Black Holes with JWST: Multi-wavelength Spectral Predictions. Priyamvada Natarajan et al. in Astrophysical Journal, Vol. 838, No. 2, Article No. 117; April 1, 2017.

Posted by Sc13t4 in Astrophysics, Consciousness, Cosmology, Space/Time, The Void, Theoretical Physics, 0 comments
Scientists Find Fractal Patterns and Golden Ratio Pulses in Stars

Scientists Find Fractal Patterns and Golden Ratio Pulses in Stars

A recent article in Scientific American has reported the discovery that fractal patterns and the golden ratio have been discovered in outer space for the very first time. Researchers from the University of Hawaiʻi at Mānoa have been studying a specific kind of stars called RR Lyrae variables using the Kepler Space Telescope. Unlike normal stars, they expand and contract, causing their brightness to adjust dramatically, and in so doing create pulsations.

But the pulsations aren’t random or arbitrary.  They are pulsating in accordance with the golden mean.  We have seen the golden ratio turn up in nature all the time, but this is the first time it has ever been identified in space.

“Unlike our Sun, RR Lyrae stars shrink and swell, causing their temperatures and brightness to rhythmically change like the frequencies or notes in a song,” Dr Lindner, the lead Researcher, explained. It’s the ratio between this swelling and shrinking that is so important.

They have been studying the pulsations of these stars, and several of them have been pulsating frequencies nearly identical to the Golden Ratio. These specific stars are called “Golden RR Lyrae Variables.”

“We call these stars ‘golden’ because the ratio of two of their frequency components is near the golden mean, which is an irrational number famous in art, architecture, and mathematics,” Dr Lindner said.

The Golden Mean

The Golden Mean or Ratio, (1.61803398875…) is a pattern that is absolutely essential to the understanding of nature, as its found in everything from sunflowers, to succulents, to sea shells, and is commonly referred to in the study of Sacred Geometry.

The Golden Ratio was essential to Da Vinci’s Vitruvian Man, can be found in studying the Pyramids of Egypt, the Parthenon, and several researches believe they have correlated it to the understanding of the human genome and unlocking the codes in our DNA.

The Golden Ratio or Divine Proportion, when plotted numerically, creates a sequence that emerges what we can see as a Fractal Pattern.  Metaphysicians and Modern Physicians for the last 15-years have been avidly suggesting that the study of fractal patterns can lead us to a greater understanding of the Universe, and a Unified Field within it that very likely may be at play in structuring the Universe.

“The golden stars are actually the first examples outside of a laboratory of what’s called “strange nonchaotic dynamics.” The “strange” here refers to a fractal pattern, and nonchaotic means the pattern is orderly, rather than random. Most fractal patterns in nature, such as weather, are chaotic, so this aspect of the variable stars came as a surprise.” Reported an article in Scientific American.

These RR Lyrae variable stars are at their youngest over 10 billion years old and their brightness can vary by 200 percent over half a day. This makes it a bit challenging to study from Earth due to our day-night cycle. It’s the variation itself causing this mathematical phenomenon.

Plato had theorized that the Universe as a whole is simply a resonance of the “Music or Harmony of the Spheres.” This new study may provide deeper insights to pairing the Philosophies & Spiritual Sciences offered throughout the ages with modern Astronomy, and how we may understand the underlying elegance of nature as a whole.

While some of these stars pulsate with a single frequency, observations confirm that others pulsate with multiple frequencies.

“Just as flamboyant rock stars deliver pulsating rhythmic beats under their song melodies, so, too, do these variable stars,” said Dr Lindner.

Posted by Sc13t4 in Astrophysics, Cosmology, Design, Mathematics, Space/Time, Theoretical Physics, 0 comments
What is SpaceTime?

What is SpaceTime?

Physicists believe that at the tiniest scales, space emerges from quanta.
What might these building blocks look like?

People have always taken space for granted. It is just emptiness, after all—a backdrop to everything else. Time, likewise, simply ticks on incessantly. But if physicists have learned anything from the long slog to unify their theories, it is that space and time form a system of such staggering complexity that it may defy our most ardent efforts to understand.

Albert Einstein saw what was coming as early as November 1916. A year earlier he had formulated his general theory of relativity, which postulates that gravity is not a force that propagates through space but a feature of spacetime itself. When you throw a ball high into the air, it arcs back to the ground because Earth distorts the spacetime around it, so that the paths of the ball and the ground intersect again. In a letter to a friend, Einstein contemplated the challenge of merging general relativity with his other brainchild, the nascent theory of quantum mechanics. That would not merely distort space but dismantle it. Mathematically, he hardly knew where to begin. “How much have I already plagued myself in this way!” he wrote.

Einstein never got very far. Even today there are almost as many contending ideas for a quantum theory of gravity as scientists working on the topic. The disputes obscure an important truth: the competing approaches all say space is derived from something deeper—an idea that breaks with 2,500 years of scientific and philosophical understanding.

[SCIET Dynamic’s Note] This article is posted here because it beautifully presents some core issues regarding the controversy over the competition to describe reality in the realm of very small changes in space. We need to find a General Theory of Spacetime.

SCIET Dynamics seeks to unite the components of SpaceTime into an interdependent set that grows in complexity as it develops. It views the Void(Awareness), Space, Matter and Consciousness as sequences of creation built one upon the other. The Void, called “Awareness” in SD, exists as a sea of extremely small and fast fluctuations, which then gives rise to a burst of energy, labeled the “First Action” which converts the burst into ever smaller increments, or “points of Awareness”, that have the effect of “formatting” the area defined by the original burst of energy. The “formatting” is the byproduct of self-measuring algorithm which reduces uniformly within the original radius of the burst. When the increments reach the size of the original center point they begin to interact, or resonate, with that value. The resonance gives rise to a new quality that allows the information about the change created by movement to bounce off of the center point and be stored in the area around the “point of Awareness”, a phenomenon that is responsible to the formation of spheres that surround every “point of Awareness. All nucleons (Protons, neutrons and electrons) are created by this affect. The same affect is responsible for spherical forms in space of all sizes.

DOWN THE BLACK HOLE

A kitchen magnet neatly demonstrates the problem that physicists face. It can grip a paper clip against the gravity of the entire Earth. Gravity is weaker than magnetism or than electric or nuclear forces. Whatever quantum effects it has are weaker still. The only tangible evidence that these processes occur at all is the mottled pattern of matter in the very early universe—thought to be caused, in part, by quantum fluctuations of the gravitational field.

Black holes are the best test case for quantum gravity. “It’s the closest thing we have to experiments,” says Ted Jacobson of the University of Maryland, College Park. He and other theorists study black holes as theoretical fulcrums. What happens when you take equations that work perfectly well under laboratory conditions and extrapolate them to the most extreme conceivable situation? Will some subtle flaw manifest itself?

General relativity predicts that matter falling into a black hole becomes compressed without limit as it approaches the center—a mathematical cul-de-sac called a singularity. Theorists cannot extrapolate the trajectory of an object beyond the singularity; its time line ends there. Even to speak of “there” is problematic because the very spacetime that would define the location of the singularity ceases to exist. Researchers hope that quantum theory could focus a microscope on that point and track what becomes of the material that falls in.

Out at the boundary of the hole, matter is not so compressed, gravity is weaker and, by all rights, the known laws of physics should still hold. Thus, it is all the more perplexing that they do not. The black hole is demarcated by an event horizon, a point of no return: matter that falls in cannot get back out. The descent is irreversible. That is a problem because all known laws of fundamental physics, including those of quantum mechanics as generally understood, are reversible. At least in principle, you should be able to reverse the motion of all the particles and recover what you had.

A very similar conundrum confronted physicists in the late 1800s, when they contemplated the mathematics of a “black body,” idealized as a cavity full of electromagnetic radiation. James Clerk Maxwell’s theory of electromagnetism predicted that such an object would absorb all the radiation that impinges on it and that it could never come to equilibrium with surrounding matter. “It would absorb an infinite amount of heat from a reservoir maintained at a fixed temperature,” explains Rafael Sorkin of the Perimeter Institute for Theoretical Physics in Ontario. In thermal terms, it would effectively have a temperature of absolute zero. This conclusion contradicted observations of real-life black bodies (such as an oven). Following up on work by Max Planck, Einstein showed that a black body can reach thermal equilibrium if radiative energy comes in discrete units, or quanta.

Theoretical physicists have been trying for nearly half a century to achieve an equivalent resolution for black holes. The late Stephen Hawking of the University of Cambridge took a huge step in the mid-1970s, when he applied quantum theory to the radiation field around black holes and showed they have a nonzero temperature. As such, they can not only absorb but also emit energy. Although his analysis brought black holes within the fold of thermodynamics, it deepened the problem of irreversibility. The outgoing radiation emerges from just outside the boundary of the hole and carries no information about the interior. It is random heat energy. If you reversed the process and fed the energy back in, the stuff that had fallen in would not pop out; you would just get more heat. And you cannot imagine that the original stuff is still there, merely trapped inside the hole, because as the hole emits radiation, it shrinks and, according to Hawking’s analysis, ultimately disappears.

This problem is called the information paradox because the black hole destroys the information about the infalling particles that would let you rewind their motion. If black hole physics really is reversible, something must carry information back out, and our conception of spacetime may need to change to allow for that.

ATOMS OF SPACETIME

Heat is the random motion of microscopic parts, such as the molecules of a gas. Because black holes can warm up and cool down, it stands to reason that they have parts—or, more generally, a microscopic structure. And because a black hole is just empty space (according to general relativity, infalling matter passes through the horizon but cannot linger), the parts of the black hole must be the parts of space itself. As plain as an expanse of empty space may look, it has enormous latent complexity.

Even theories that set out to preserve a conventional notion of spacetime end up concluding that something lurks behind the featureless facade. For instance, in the late 1970s Steven Weinberg, now at the University of Texas at Austin, sought to describe gravity in much the same way as the other forces of nature. He still found that spacetime is radically modified on its finest scales.

Physicists initially visualized microscopic space as a mosaic of little chunks of space. If you zoomed in to the Planck scale, an almost inconceivably small size of 10–35 meter, they thought you would see something like a chessboard. But that cannot be quite right. For one thing, the grid lines of a chessboard space would privilege some directions over others, creating asymmetries that contradict the special theory of relativity. For example, light of different colors might travel at different speeds—just as in a glass prism, which refracts light into its constituent colors. Whereas effects on small scales are usually hard to see, violations of relativity would actually be fairly obvious.

In SCIET Dynamics the “atoms” of space time are perceived to be quantum scale fluctuations that leave tetrahedral tracks as they appear and disappear. The tracks are related to the Event Horizons of Black Holes because they bound the the area between the void and space. In this sense, the tiny “tetrons” are an artifact of the creation of space.

The thermodynamics of black holes casts further doubt on picturing space as a simple mosaic. By measuring the thermal behavior of any system, you can count its parts, at least in principle. Dump in energy and watch the thermometer. If it shoots up, that energy must be spread out over comparatively few molecules. In effect, you are measuring the entropy of the system, which represents its microscopic complexity.

If you go through this exercise for an ordinary substance, the number of molecules increases with the volume of material. That is as it should be: If you increase the radius of a beach ball by a factor of 10, you will have 1,000 times as many molecules inside it. But if you increase the radius of a black hole by a factor of 10, the inferred number of molecules goes up by only a factor of 100. The number of “molecules” that it is made up of must be proportional not to its volume but to its surface area. The black hole may look three-dimensional, but it behaves as if it were two-dimensional.

This weird effect goes under the name of the holographic principle because it is reminiscent of a hologram, which presents itself to us as a three-dimensional object. On closer examination, however, it turns out to be an image produced by a two-dimensional sheet of film. If the holographic principle counts the microscopic constituents of space and its contents—as physicists widely, though not universally, accept—it must take more to build space than splicing together little pieces of it.

The relation of part to whole is seldom so straightforward, anyway. An H2O molecule is not just a little piece of water. Consider what liquid water does: it flows, forms droplets, carries ripples and waves, and freezes and boils. An individual H2O molecule does none of that: those are collective behaviors. Likewise, the building blocks of space need not be spatial. “The atoms of space are not the smallest portions of space,” says Daniele Oriti of the Max Planck Institute for Gravitational Physics in Potsdam, Germany. “They are the constituents of space. The geometric properties of space are new, collective, approximate properties of a system made of many such atoms.”

What exactly those building blocks are depends on the theory. In loop quantum gravity, they are quanta of volume aggregated by applying quantum principles. In string theory, they are fields akin to those of electromagnetism that live on the surface traced out by a moving strand or loop of energy—the namesake string. In M-theory, which is related to string theory and may underlie it, they are a special type of particle: a membrane shrunk to a point. In causal set theory, they are events related by a web of cause and effect. In the amplituhedron theory and some other approaches, there are no building blocks at all—at least not in any conventional sense.

Although the organizing principles of these theories vary, all strive to uphold some version of the so-called relationalism of 17th- and 18th-century German philosopher Gottfried Leibniz. In broad terms, relationalism holds that space arises from a certain pattern of correlations among objects. In this view, space is a jigsaw puzzle. You start with a big pile of pieces, see how they connect and place them accordingly. If two pieces have similar properties, such as color, they are likely to be nearby; if they differ strongly, you tentatively put them far apart. Physicists commonly express these relations as a network with a certain pattern of connectivity. The relations are dictated by quantum theory or other principles, and the spatial arrangement follows.

Phase transitions are another common theme. If space is assembled, it might be disassembled, too; then its building blocks could organize into something that looks nothing like space. “Just like you have different phases of matter, like ice, water and water vapor, the atoms of space can also reconfigure themselves in different phases,” says Thanu Padmanabhan of the Inter-University Center for Astronomy and Astrophysics in India. In this view, black holes may be places where space melts. Known theories break down, but a more general theory would describe what happens in the new phase. Even when space reaches its end, physics carries on.

ENTANGLED WEBS

The big realization of recent years—and one that has crossed old disciplinary boundaries—is that the relevant relations involve quantum entanglement. An extrapowerful type of correlation, intrinsic to quantum mechanics, entanglement seems to be more primitive than space. For instance, an experimentalist might create two particles that fly off in opposing directions. If they are entangled, they remain coordinated no matter how far apart they may be.

Traditionally when people talked about “quantum” gravity, they were referring to quantum discreteness, quantum fluctuations and almost every other quantum effect in the book—but never quantum entanglement. That changed when black holes forced the issue. Over the lifetime of a black hole, entangled particles fall in, but after the hole evaporates fully, their partners on the outside are left entangled with—nothing. “Hawking should have called it the entanglement problem,” says Samir Mathur of Ohio State University.

Even in a vacuum, with no particles around, the electromagnetic and other fields are internally entangled. If you measure a field at two different spots, your readings will jiggle in a random but coordinated way. And if you divide a region in two, the pieces will be correlated, with the degree of correlation depending on the only geometric quantity they have in common: the area of their interface. In 1995 Jacobson argued that entanglement provides a link between the presence of matter and the geometry of spacetime—which is to say, it might explain the law of gravity. “More entanglement implies weaker gravity—that is, stiffer spacetime,” he says.

Several approaches to quantum gravity—most of all, string theory—now see entanglement as crucial. String theory applies the holographic principle not just to black holes but also to the universe at large, providing a recipe for how to create space—or at least some of it. For instance, a two-dimensional space could be threaded by fields that, when structured in the right way, generate an additional dimension of space. The original two-dimensional space would serve as the boundary of a more expansive realm, known as the bulk space. And entanglement is what knits the bulk space into a contiguous whole.

In 2009 Mark Van Raamsdonk of the University of British Columbia gave an elegant argument for this process. Suppose the fields at the boundary are not entangled—they form a pair of uncorrelated systems. They correspond to two separate universes, with no way to travel between them. When the systems become entangled, it is as if a tunnel, or wormhole, opens up between those universes, and a spaceship can go from one to the other. As the degree of entanglement increases, the wormhole shrinks in length, drawing the universes together until you would not even speak of them as two universes anymore. “The emergence of a big spacetime is directly tied into the entangling of these field theory degrees of freedom,” Van Raamsdonk says. When we observe correlations in the electromagnetic and other fields, they are a residue of the entanglement that binds space together.

Many other features of space, besides its contiguity, may also reflect entanglement. Van Raamsdonk and Brian Swingle, now at the University of Maryland, College Park, argue that the ubiquity of entanglement explains the universality of gravity—that it affects all objects and cannot be screened out. As for black holes, Leonard Susskind of Stanford University and Juan Maldacena of the Institute for Advanced Study in Princeton, N.J., suggest that entanglement between a black hole and the radiation it has emitted creates a wormhole—a back-door entrance into the hole. That may help preserve information and ensure that black hole physics is reversible.

Whereas these string theory ideas work only for specific geometries and reconstruct only a single dimension of space, some researchers have sought to explain how all of space can emerge from scratch. For instance, ChunJun Cao, Spyridon Michalakis and Sean M. Carroll, all at the California Institute of Technology, begin with a minimalist quantum description of a system, formulated with no direct reference to spacetime or even to matter. If it has the right pattern of correlations, the system can be cleaved into component parts that can be identified as different regions of spacetime. In this model, the degree of entanglement defines a notion of spatial distance.

In physics and, more generally, in the natural sciences, space and time are the foundation of all theories. Yet we never see spacetime directly. Rather we infer its existence from our everyday experience. We assume that the most economical account of the phenomena we see is some mechanism that operates within spacetime. But the bottom-line lesson of quantum gravity is that not all phenomena neatly fit within spacetime. Physicists will need to find some new foundational structure, and when they do, they will have completed the revolution that began just more than a century ago with Einstein.

This article was originally published with the title “What Is Spacetime?”
Rights & Permissions
Posted by Sc13t4 in Astrophysics, Cosmology, Design, Mathematics, Space/Time, Theoretical Physics, 0 comments